首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1930篇
  免费   149篇
  2023年   7篇
  2021年   27篇
  2020年   17篇
  2019年   23篇
  2018年   40篇
  2017年   27篇
  2016年   63篇
  2015年   82篇
  2014年   99篇
  2013年   114篇
  2012年   154篇
  2011年   128篇
  2010年   85篇
  2009年   81篇
  2008年   119篇
  2007年   118篇
  2006年   126篇
  2005年   98篇
  2004年   98篇
  2003年   109篇
  2002年   88篇
  2001年   10篇
  2000年   16篇
  1999年   23篇
  1998年   24篇
  1997年   24篇
  1996年   18篇
  1995年   13篇
  1994年   16篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   12篇
  1989年   5篇
  1988年   12篇
  1987年   9篇
  1986年   10篇
  1985年   11篇
  1984年   12篇
  1983年   12篇
  1982年   14篇
  1981年   14篇
  1980年   15篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   8篇
  1975年   10篇
  1974年   6篇
  1973年   6篇
排序方式: 共有2079条查询结果,搜索用时 15 毫秒
991.

Background  

Neutrophils represent the first line of defence against aggressions. The programmed death of neutrophils is delayed by pro-inflammatory stimuli to ensure a proper resolution of the inflammation in time and place. The pro-inflammatory stimuli include granulocyte-macrophage colony-stimulating factor (GM-CSF). Recently, we have demonstrated that although neutrophils have an identical spontaneous apoptosis in elderly subjects compared to that in young subjects, the GM-CSF-induced delayed apoptosis is markedly diminished. The present study investigates whether an alteration of the GM-CSF stimulation of MAPKs play a role in the diminished rescue from apoptosis of PMN of elderly subjects.  相似文献   
992.
Grapevine (Vitis vinifera L.) is susceptible to many pathogens, such as Botrytis cinerea, Plasmopara viticola, Uncinula necator, and Eutypa lata. Phytochemicals are used intensively in vineyards to limit pathogen infections, but the appearance of pesticide-resistant pathogen strains and a desire to protect the environment require that alternative strategies be found. In the present study, the beta-1,3-glucan laminarin derived from the brown algae Laminaria digitata was shown both to be an efficient elicitor of defense responses in grapevine cells and plants and to effectively reduce B. cinerea and P. viticola development on infected grapevine plants. Defense reactions elicited by laminarin in grapevine cells include calcium influx, alkalinization of the extracellular medium, an oxidative burst, activation of two mitogen-activated protein kinases, expression of 10 defense-related genes with different kinetics and intensities, increases in chitinase and beta-1,3-glucanase activities, and the production of two phytoalexins (resveratrol and epsilon-viniferin). Several of these effects were checked and confirmed in whole plants. Laminarin did not induce cell death. When applied to grapevine plants, laminarin reduced infection by B. cinerea and P. viticola by approximately 55 and 75%, respectively. Our data describing a large set of defense reactions in grapevine indicate that the activation of defense responses using elicitors could be a valuable strategy to protect plants against pathogens.  相似文献   
993.
Wei W  Herbig U  Wei S  Dutriaux A  Sedivy JM 《EMBO reports》2003,4(11):1061-1066
Current models envision replicative senescence to be under dual control by the p53 and retinoblastoma (RB) tumour-suppressor pathways. The role of the p16INK4a–RB pathway is controversial, and the function of RB in human cells has not been tested directly. We used targeted homologous recombination to knock out one copy of RB in presenescent human fibroblasts. During entry into senescence, RB+/− cells underwent spontaneous loss of heterozygosity and the resultant RB−/− clones bypassed senescence. The extended lifespan phase was eventually terminated by a crisis-like state. The same phenotype was documented for p21 CIP1/WAF1 and p53 heterozygous cells, indicating that loss of function of all three genes results in failure to establish senescence. By contrast, the abolition of p16 function by the expression of a p16-insensitive cyclin-dependent kinase 4 protein or siRNA-mediated knockdown provided only minimal lifespan extension that was terminated by senescence. We propose that p53, p21 and RB act in a linear genetic pathway to regulate cell entry into replicative senescence.  相似文献   
994.
Cellular replicative senescence is a permanent growth arrest state that can be triggered by telomere shortening. The cyclin-dependent kinase (Cdk) inhibitor p21CIP1/WAF1 (p21), encoded by the CDKN1A gene, is a critical cell cycle regulator whose expression increases as cells approach senescence. Although the pathways responsible for its up-regulation are not well understood, compelling evidence indicates that the upstream triggering event is telomere dysfunction. Studies of replicative senescence have been complicated by the asynchrony of its onset, which is caused by the continuous and stochastic variability in individual cell lifespans. In fact, the actual entry into senescence has never been observed in a single unperturbed cell. We report here a new in vitro human model system that allows entry into senescence to be monitored in real-time in individual viable cells. We used homologous recombination to generate non-immortalized fibroblast cells with the enhanced yellow fluorescence protein (EYFP) gene knocked into one CDKN1A gene copy, allowing promoter activity to be visualized as fluorescence intensity. Gamma irradiation, DNA-damaging drugs, expression of p14ARF or oncogenic Ras, and replicative exhaustion all resulted in elevated EYFP expression, demonstrating its proper control by physiological signalling circuits. Analysis by time-lapse microscopy of cultures approaching replicative senescence revealed that p21 levels rise abruptly in individual aging cells and remain elevated for extended periods of time.  相似文献   
995.
Fourier transform infrared (FT-IR) spectroscopy is a convenient physico-chemical technique to investigate various cell materials. Bacteria of class Mollicutes, identified by conventional methods, as Mycoplasma, Acholeplasma and Ureaplasma genera were characterized using this method. A data set of 74 independent experiments corresponding to fourteen reference strains of Mollicutes was examined by FT-IR spectroscopy to attempt a spectral characterization based on the biomolecular structures. In addition to the separation of Mollicutes within the lipidic region into five main clusters corresponding to the three phylogenetic groups tested, FT-IR spectroscopy allowed a fine discrimination between strains belonging to the same species by using selective spectral windows, particularly in the 1200-900 cm(-1) saccharide range. The results obtained by FT-IR were in good agreement with both taxonomic and phylogenetic classifications of tested strains. Thus, this technique appears to be a useful tool and an accurate mean for a rapid characterization of Mollicutes observed in humans.  相似文献   
996.
Raza H  Ahmed I  John A 《Life sciences》2004,74(12):1503-1511
In streptozotocin (STZ)-induced diabetes, destruction of pancreatic beta-cell causes an acute shortage of insulin. Increased oxidative stress is believed to be one of the main factors in the etiology and complications of diabetes. In this study we have reported hyperglycemia and glutathione-associated oxidative stress in rats one week after treatment with STZ. In our previous studies, we have reported oxidative stress-related changes in xenobiotic metabolism in tissues from STZ-induced chronic diabetic rats. Here, we demonstrate by immunohistochemistry, that glutathione S-transferase (GST) isoenzymes are differentially expressed in the liver, kidney and testis of diabetic rats. The distribution of GST isoenzymes was found to be tissue- and regio-specific. In addition, we have also shown that treatment with an extract of Momordica charantia (karela), an antidiabetic herb, modulates GST expression in diabetic rats and reverts them to the normal distribution as seen in the tissues of control rats. These results suggest that glutathione metabolism and GST distribution in the tissues of diabetic rats may play an important role in the etiology, pathology and prevention of diabetes.  相似文献   
997.
The plant hypersensitive response (HR) to avirulent bacterial pathogens results from programmed cell death of plant cells in the infected region. Ion leakage and changes in signaling components associated with HR progression were measured. These studies compared Arabidopsis mutants affecting feedback loops with wild-type plants, with timepoints taken hourly. In response to Pseudomonas syringae pv. tomato DC3000 x avrB, npr1-2 mutant plants showed increased ion leakage relative to wild-type plants. Hydrogen peroxide accumulation was similar to that in wild type, but salicylic acid accumulation was reduced at some timepoints. With DC3000 x avrRpt2, similar trends were seen. In response to DC3000 x avrB, ndr1-1 mutant plants showed more ion leakage than wild-type or npr1-2 plants. Hydrogen peroxide accumulation was delayed by approximately 1 h and reached half the level seen with wild-type plants. Salicylic acid accumulation was similar to npr1-2 mutant plants. With DC3000 x avrRpt2, ndr1-1 mutant plants showed no ion leakage, no hydrogen peroxide accumulation, and minimal salicylic acid accumulation. Results with a ndr1-1 and npr1-2 double mutant were similar to ndr1-1. A model consistent with these data is presented, in which one positive and two negative regulatory circuits control HR progression. Understanding this circuitry will facilitate HR manipulation for enhanced disease resistance.  相似文献   
998.
Hyperhomocysteinemia is a risk factor for cardiovascular diseases that induces endothelial dysfunction. Here, we examine the participation of endothelial NO synthase (eNOS) in the homocysteine-induced alterations of NO/O(2)(-) balance in endothelial cells from human umbilical cord vein. When cells were treated for 24 h, homocysteine dose-dependently inhibited thrombin-activated NO release without altering eNOS phosphorylation and independently of the endogenous NOS inhibitor, asymmetric dimethylarginine. The inhibitory effect of homocysteine on NO release was associated with increased production of reactive nitrogen and oxygen species (RNS/ROS) independent of extracellular superoxide anion (O(2)(-)) and was suppressed by the NOS inhibitor L-NAME. In unstimulated cells, L-NAME markedly decreased RNS/ROS formation and the ethidium red fluorescence induced by homocysteine. This eNOS-dependent O(2)(-) synthesis was associated with reduced intracellular levels of both total biopterins (-45%) and tetrahydrobiopterin (-80%) and increased release of 7,8-dihydrobiopterin and biopterin in the extracellular medium (+40%). In addition, homocysteine suppressed the activating effect of sepiapterin on NO release, but not that of ascorbate. The results show that the oxidative stress and inhibition of NO release induced by homocysteine depend on eNOS uncoupling due to reduction of intracellular tetrahydrobiopterin availability.  相似文献   
999.
Escherichia coli contains at least five ATP-dependent DEAD-box RNA helicases which may play important roles in macromolecular metabolism, especially in translation and mRNA decay. Here we demonstrate that one member of this family, CsdA, whose expression is induced by cold shock, interacts physically and functionally with RNase E. Three independent approaches show that after a shift of cultures to 15 degrees C, CsdA co-purifies with RNase E and other components of the RNA degradosome. Moreover, functional assays using reconstituted minimal degradosomes prepared from purified components in vitro show that CsdA can fully replace the resident RNA helicase of the RNA degradosome, RhlB. In addition, under these conditions, CsdA displays RNA-dependent ATPase activity. Taken together, our data are consistent with a model in which CsdA accumulates during the early stages of cold acclimatization and subsequently assembles into degradosomes with RNase E synthesized in cold-adapted cultures. These findings show that the RNA degradosome is a flexible macromolecular machine capable of adapting to altered environmental conditions.  相似文献   
1000.
A high incidence of breast and ovarian cancers has been linked to mutations in the BRCA1 gene. BRCA1 has been shown to be involved in both positive and negative regulation of gene activity as well as in numerous other processes such as DNA repair and cell cycle regulation. Since modulation of the RNA polymerase II carboxy-terminal domain (CTD) phosphorylation levels could constitute an interface to all these functions, we wanted to directly test the possibility that BRCA1 might regulate the phosphorylation state of the CTD. We have shown that the BRCA1 C-terminal region can negatively modulate phosphorylation levels of the RNA polymerase II CTD by the Cdk-activating kinase (CAK) in vitro. Interestingly, the BRCA1 C-terminal region can directly interact with CAK and inhibit CAK activity by competing with ATP. Finally, we demonstrated that full-length BRCA1 can inhibit CTD phosphorylation when introduced in the BRCA1(-/-) HCC1937 cell line. Our results suggest that BRCA1 could play its ascribed roles, at least in part, by modulating CTD kinase components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号